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Abstract

This paper describes a body of work aimed at extending thehre& mobile navigation and mapping. We
describe how running topological and metric mapping ance pestimation processes concurrently, using vision
and laser ranging, has produced a full six-degree-of-freedutdoor navigation system. It is capable of producing
intricate 3D maps over many kilometers and in real time. Was@ter issues concerning the intrinsic quality of
the built maps and describe our progress towards addingrgeEntabels to maps via scene de-construction and
labeling. We show how our choices of representation, imegemethods and use of both topological and metric
techniques naturally allow us to fuse maps built from midtipessions with no need for manual frame alignment
or data association.

. INTRODUCTION

This paper describes the techniques that we are employibgiltban end-to-end and infrastructure-free
urban navigation system. We wish to build an embedded systgrable of repetitively and progressively
(i.e. over multiple sessions) mapping large urban areas amd time again in six degrees of freedom
(6 D.O.F). Our concerns range from the low-level control ehsors and filtering their output through
to perception, estimation and inference, longevity, isiection, loop closing, data management, software
architectures and up to high level semantic labeling of mapthe spirit of the International Symposium
of Robotics Research (ISRR), we aim to provide the readeh witechnical panorama of how these
components work together and, while doing so, direct thdee# more detailed technical accounts, to
discuss their strengths and weaknesses and, where apgliealy open questions.

Recent years have seen wholesome progress in buildingicabatems that can navigate in outdoor
settings. The recent literature on the DARPA Grand Cha#eng@0], [73], [32], [33] is a testament to
the complexity of the problems involved — problems that ssgate both a systems point of view and
a deep understanding of the perception and inference tag&lved. This paper, submitted to the special
issue on ISRRO7, describes our progress towards buildirggrdination of hardware and software which
will enable a robot to operate in typical urban environmdmtth or withouta priori information) over
extended periods of time with no reliance on GPS. For anyiquéatr session, in real time, our software
infrastructure is able to process stereo images (colleatt@®Hz), infer 6 D.O.F. pose and dense disparity
maps, detect and apply loop closures using images from a@ancamera, generate hi-fidelity 3D laser
maps and shade them with reflectance and/or color image Tadéh.done, we can annotate these maps
with textual semantic labels.



While this functionality is a good substrate for singlesses mobile autonomy, we have the additional
goal of supporting a “life long learning” paradigm. We leamm an unsupervised fashion, models of the
appearance of typical workspaces from large amounts dfitigidata (thousands of images). By logging
all data (at around 60Mb/s) and considering the totality Ibflata sets off line, this model, via the Fast
Appearance Based topological mapping framework (“FAB-MA&escribed in Section 1ll, allows us to
stitch together intersecting vehicle trajectories frorasgens taken days apart with no user intervention.
Our loop closure apparatus browses the union of recordedesmand discovers intersections and overlaps
between sessions. With these topological constraintsnid,h&e are able to fuse chunks of maps together,
building ever larger metric and topological representetiof the workspace. We now outline the structure
of this paper by walking through the key components of outesys

Pose and trajectory estimation is a fundamental requirement for our work and we currently
have two alternatives. The first, discussed in [51], [12] &1, is a SLAM system driven by
scan matching between 3D laser point clouds, which is bas¢deoExactly Sparse Delayed State
formulation proposed by Eustice [21]. The second, which wkfacus on in this paper, is more
suited to the vehicle shown in Figure 2. It is based on theirgjiVindow Filter of Sibley [63]
and is driven by robust inter-frame feature tracking acresguential stereo image-pairs. This
vision system is described in Section Il. Our motivation purshing the vision-based system
over our 3D laser-based system is threefold: firstly, stex@meras are cheap; secondly, they
capture the geometry of the local scene orders of magnitagterfthan scanning lasers. Finally,
in contrast to many scan matching techniques, the reg@traéetween sequential stereo views
(modulo correct feature tracking) uses the same real watithets rather than two different
clouds of laser points sampled from the workspace’s susface

Topology inference. However good the online pose estimation engine is, withdobaj in-
formation loop closure detection and prosecution (actimgtlme loop closure detection and
altering trajectory and map estimates) will always be a eamcOur loop closure detection
component, “FAB-MAP” (Fast Appearance Based Mapping) [IB3%], [14] is probabilistic and
solely appearance-based. Crucially for our needs, it iggianally fast and has an extremely
low false-positive rate; it is discussed further in Sectibn

Global optimisation. Between them, the trajectory estimation and loop closingBEMAP)
processes produce a graph of poses where edges represemgttieeproximity between poses.
The pose estimation system directly provides high qualierpose constraints. The metric
parameterisations of the loop closures are however vergrtaio — all we know is that we are
close to a place we have been before. In Section IV we deseowehis topological information
is upgraded to a metric constraint. We do so either using & (Iérative closest point) match
of local-region point clouds or using two pairs of stereo g@s Following that we perform pose
relaxation over the graph of poses and we discuss the fotimlaf the optimisation in Section
V.

3D map creation. In this paper, and in contrast to our earlier work, we do n& lasers for
pose estimation; instead, given a high quality 6 D.O.F. sleftrajectory, we can capture the far-
field 3D structure, color and surface reflectance propedii¢se workspace by “trawling” a pair
of vertically oriented lasers through the workspace whalkirng a great deal of care regarding
time-stamping and system delay estimation. In Section Vipvasent some of the maps we are
able to produce and go on to analyse their detail and quality.



Fig. 1. Aerial photos of the data collection sites, Begbr@ké&) and New College (right). The criss-cross pattern gufes of the Begbroke
data set was executed in the vertical green wedge-shapel ipathe east and the large loop around the “C” shaped bgildiine “quad”
of New College, around which many small (circa 100m ) loopsemmade, can be seen in the North West of the right image. Tige la
“dog leg” shaped loop in the New College data sets runs Edspfotne quad and around the perimeter of the gardens.

Dense stereo. We have a facility to compute dense disparity maps from oewrest rig in real
time. This can be used for obstacle avoidance tasks but tisrased to fill in the 3D structure of
the workspace which is not sampled by our laser scanners,pilnducing total scene coverage.
In Section VI-B we describe the approach we use for dispaatgulation and present statistics
regarding its performance.

Scene labeling. After map building comes our final step, which is the additmhsemantic

labels to the maps. Section VIII describes how by learningeaegative model of visual and
geometric appearance we are able to classify regions ofdimt glouds into one of (currently)
seven classes using a support vector machine.

A. Data Sets

For reasons of clarity, figures and tables of results will bespnted close to the text that describes the
techniques that generate them, rather than in a monoligisiclts section. We therefore need to describe
the datasets up front so they can be referred to in individeetions. We collected data from two principal
sites in Oxfordshire, UK. We shall refer to them as “Begbiaked “New College” and their characteristics
are summarised in Table I. Aerial photos of both data cabecsites are shown in Figure 1, and the
caption describes how to locate the trajectories of theckershown in this paper within these aerial
images. In all 67.2 GB of data was logged, all of which has h@ewessed and presented in this paper.
Much of the New College data has been published as part ofRiR Data Paper and can be downloaded
and used by interested readers [65].

B. Platform

All the algorithms, systems and results in this paper hawa [@pplied to data gathered by the vehicle
shown in Figure 2. While there is nothing vehicle-specifioum work, it is worthwhile swiftly summarising
the vehicle’s characteristics. The vehicle is actuated BM#200 base from Segway. It has four internal
PCs at 1.6 GHz with around 1TB of total storage. Images stedlaat 2Hz from a Point Grey Ladybug
camera (5 panoramic images) are used in our appearancg{bapeclosure (FAB-MAP) algorithm. Stereo
pairs read at 20Hz from a Point Grey Bumblebee camera are fosdtie online pose estimation and
dense stereo. Two vertically mounted LMS 291 lasers are us@®bHz mode to capture the far field
geometry. The vehicle can run for approximately 90 minutessingle battery charge with all systems
powered.
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Fig. 2. The results in this paper correspond to data gathfeoed the modified Segway platform shown above. The vehick daensor
payload of 2 SICK lasers, an XSens inertial sensor, a GARMPSEGa Point Grey stereo “Bumblebee” camera and a “Ladybu@2dmamic
camera. It carries four small form factor PCs linked with ai@@Bternal network. Total onboard storage is of the orded ©B.

TABLE |
SUMMARY OF THE SALIENT PROPERTIES OF THE TWO DATA SETS USED INHIS PAPER

Data Set Properties
Name Measure Value
Size 9.3GB
Laser no
Begbroke Stere_o 20Hz at_ 512 by 384 mono
Omnicam 2Hz, 5 images color
Distance Driven| 1.08 km
Sessions single shot
Size Laser: 2.9GB, Images 53GB
Laser 2 x 75Hz over 90 degrees at 0.5 deg resolution
Stereo 20Hz at 512 by 384 mono
New College : .
Omnicam 2Hz, 5 images color
Distance Driven| 5.13 km
Sessions multiple over three days

II. REAL-TIME POSE ESTIMATION FROM STEREO

To reveal the underlying structure of the pose estimatiomnknown environments problem, it is
useful to approach it from the non-linear least squareshopdition perspective. This point of view is
much more in line with traditional statistical point estitioa than state space filtering. This perspective
is useful for a number of reasons. First, it highlights thadamental minimization principle at work
in least squares, which is sometimes harder to see from #ie space filtering perspective. Second,
starting with the underlying probability density functethat describe our problem, it clearly shows the
probabilistic nature of the task — that is, tracking a joimstdbution through a large state space; a
state space that changes dimension as we undertake therfentd probabilistic operations of removing
parameters via marginalization, and adding parameter&w@ propagation and conditioning. A third
reason to use statistical point estimation is because tis®ega rich body of theory about the convergence
of least squares estimators. Further, starting from lepsires one can easily see the connection to many
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Fig. 3. SLAM notations

important concepts like Newton’s method, Fisher Inforimatiand the Cramer Rao Lower bound — all
of which have intuitive derivations starting from tradiia statistical point estimation.

A. Notations

We will adopt the following notations illustrated by Figuge

. the 6D robot poses will be denoted;, = [x] , .. m]

. the 3D landmarks will be writteng,,, = [x], ,....x%, |7,

. z;; will indicate a measurement of th& Iandmark observed from thg" pose,

. an input command to the robot (or a motion model) from a pdsenill be written u;.

The state vector, comprised of the map and poses, is [x],,x]|” and has dimensiodim(x) =
6m + 3n. The aim is to estimate the state vector from the input contma@md measurements. The effect
of the input command on the pose is modeled by phecess modeand the effect of the measurement
appears through theensor model

Process model. The process model describes how the current pose can beatsdifintom the
previous pose using the input commarfg: R® — R®, x, = f;(xp,, uj41) +W;i1, Wherew;

is the process noise that we will assume to be Gaussian gthisammon assumption). The noise
vectorw; ., is additive and we assume it follows a normal distribution.; ~ N(0,Q,+1), SO

that Xpjp1 N(fj(xpy ujy1), Q1)

Sensor model. The sensor modeh,;; : R4m®) — Rdim(zi,) | returns the expected value the sensor

will give when thei"* landmark is observed from thg" pose:z;; = hij(Xm,, Xp;) + Vij. We

assumev;; ~ N (0, R;;) so thatz;; ~ N (h;;, R;;), whereR; is the observation error covariance

matrix. Concatenating all the observations, measurenueatibns and measurement covariances

together,z = [z1,,z],,....22 17, h = [hdy, b1, ... RL 17, and R = diag(Rio, Ri1, -, Rum),
givesz ~ N(h,R), which deflnes the measurement likelihop|x). The first posex,, is a
hyper-parameter that fixes the first pose and thus the ensters (this also removes the gauge
freedom).

To be concrete, in this paper which uses stereo visignprojects thei'® 3D landmark into the image

taken from thej™" pose and sa;; is a pixel position(u, v).
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We might also assume that we hapeor information about the map and landmarks that can be
represented by a Gaussian. bgt ~ N (xm, IT™!) denote the prior information about the first pose and

the map:
s _ fim o Hm Hpm
we[] e[ ]
By combining the process information with the prior infoitioa, we obtain the prediction probability

density function:

w-e((7) [ o])

Under these Gaussian assumptions, the joint probabilityz) = p(z|x)p(x) of the measurements and

the state vector is:
X711 I

p(EX)p(x) =N | | f(®) |, Q : (2)
h(x) R

Our goal is to compute the value of which maximizes this density, witlx being a fixed set of
measurements.

Taking logs and ignoring constant terms that do not depens,ome see that maximising(x, z) is
equivalent to minimising

(%) = £ (6(x)7Cg(x) = ()| ©
where
gui(x) X — Xm m!
o) = | ) | = | %) |, C= Q |
g-(x) z — h(x) R

and we have lumped the sensor model, process model, andipidomation terms together. The goal
is to find the choice ofkx which minimises the quadratic non-linear cost functiof@). Writing the
normal equations associated with the Gauss-Newton metiragbfving non-linear least-squares gives us
an insight into the structure of the problem. Iggtandg,, be the RHS vectors corresponding to the robot
path and map respectively. The Gauss-Newton update canpoessed as a x 2 system of equations:

Am  Amp 0Xm | | 8m
AmpT A, xp | | 8 |

Taking advantage of this sparse structure, the system d@tieqs is typically solved by forward-then-
backward substitution, either of thgath-onto-the-majr of the map-onto-the-patfj71].

Depending on the process noise and the prior, the systemxmatr can take on different sparsity
patterns that affect the complexity of finding a solution. iAfinite process noise covariance would mean
the motion model does not contribute information to the eystwhich would reduce the process-block
of the system matrix to block diagonal, whichd¥m +n?) to solve. Similarly, without prior information
(i.e. IT = 0) the map-block is also block diagonal, which@¥m?* + n) to solve. Without information
from the motion model and without prior information the plerh is equivalent to the Bundle Adjustment
problem in photogrammetry, which can be solved in eithém? + n) or O(m + n?) [8]. It is interesting
to note that in this form (no motion model, no prior), the fiogitimal solution using cameras appears
to have been developed by Brown circa 1958 [7]. Brown was #isooriginator of what has come to
be known as the Tsai camera model [72]. When converted to wsige least squares framework, the
computational costs mentioned above can typically be mditc quadratic [2].



B. The Sliding Window Filter

For locally optimal trajectory and map estimation we empdogliding Window Filter (SWF), which
is an approximation to the full feature-based batch noedinleast squares SLAM problem [62], [63].
The SWF concentrates computational resources on acguesinating the spatially immediate map and
trajectory from a sliding time window of the most recent sensmeasurements. To keep computation
tractable, old poses and landmarks that are not visible tt@rcurrently active sliding window of poses
are marginalized out. After marginalization, the remagninon-linear least squares problem is solved via
a sparse Gauss-Newton method with a robust Huber-costidunct

Marginalizing out the parameters we wish to remove is edentato applying theSchur complement
to the least squares equations [35], [61]. For examplengikie system

Aa A.b 5Xa . ga
AL A 0xXp | | 8b |’

reducing the parametess, onto the parameters,, gives

Aa Ab Xa o 8a
0 Ac - AgAglAb Xy n g — AgAglga '

where the terrmgA;lAb is called the Schur complement Af, in Ay,. After this forward substitution
step, the smaller lower-right systefh, — AL A Ay][xp] = [gn — AL A, 'g.] can be solved for updates
to x;,. The SWF solves incrementally only for the smaller systerhictv is how it maintains constant
time operation. Using back-substitution, the full systesm de solved for at any point — for instance at
loop closure if we desire a global solution. However, we finel global solution is more readily computed
with pose-graph relaxation techniques described in Sedtioand do not use the SWF for loop closure.

1) Sliding Window Filter OverviewWe now give a brief synopsis of the SWF algorithm.

Adding new pose parameters. First, after completingn — 1 steps, the command,, is used to drive
the system forward via the process modgl, = f(xp, ,,us,), Which adds six new pose parameters
to x,. Recall that in the Gauss-Newton method the covarianceibmiatrapproximated by the inverse
of the Hessian matrix [3]. Thus, after applying the processdeh but before incorporating any new
measurements, we can use the Gauss-Newton method to coarpufaated information matrix, which
is simply the Hessian associated with f&E solution. This operation is a linearized error propagation
affects only the process-block of the information matrikgdaan be computed in constant time.

Removing parameters:. Next, if there are now more thah poses active (for &-step SWF), then the
we marginalize out the oldest pose parameters using ther ®cmplement. Ifk = 1 then this step is
algebraically equivalent to the EKF SLAM timestep, and ¢her only ever a single active pose. Note
that marginalizing affects the RHS of the system equatiémsconjunction with the error propagation
described above, this step transforms the state and infammatrix identically to the first order discrete
EKF timestep — i.e. error propagation to a new pose followgdnarginalizing old pose parameters is
equivalent to the EKF timestep. At this point, to keep theesteector size bounded, we also marginalize
out invisible landmarks that are no longer visible from tloéivee poses.

Updating parameters. Before a complete measurement update is computed, pararaeteadded ta,,,
to represent any newly observed landmarks (initial valuescamputed via stereo), antl,, is extended
(with zeros) appropriately. Finally, all the measuremenithin the time window are used to update the
least squares solution. This step requires solving thelinear least squares problem, which we do via
a sparse robust Gauss-Newton method.

Depending on the number of poses in the sliding window, thé=3%¥h scale from the offline, optimal
batch least squares solution to a fast online incrementatisn. For instance, if the sliding window
encompasses all poses, the solution is algebraically algmi/to full SLAM; if only one time-step is
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Fig. 4. The average mean squared error performance for M@demetry compared to the batch solution, as well as the StURisn.
The SWF can be seen as strictly superior to VO with the samepatational complexity as VO but with near optimal conveigen

maintained, the solution is algebraically equivalent t® Hxtended Kalman Filter SLAM solution [40]. If
robot poses and environment landmarks are slowly marge@lout over time such that the state vector
ceases to grow, then the filter becomes constant time, likeaViOdometry. The sliding window method
also enables reversible data association [5], out-of semueeasurement updates, and robust estimation
across multiple timesteps — all of which help the overallfpenance of our system.

This approach allows us to decouple our loop closure system the core pose estimator, and hence
concentrates computational resources on improving thal lesult. With high bandwidth sensors (like
cameras) focusing on the local problem is clearly imporftantcomputational reasons; this is especially
true if we wish to fuse all of the sensor data (or a significamtipn thereof). However, even with this
local focus, once a loop closure is identified, global optetion over the sequence left behind can be a
good match to the global batch solution.

It is interesting to note what happens if we simply deleteapaaters from the estimator instead of
marginalizing them out. For a sliding window of size the error converges liké/k — just as we
would expect the batch estimator to do. However, aftesteps, the error stops converging as we delete
information from the back of the filter. With such deletingdaa sliding window ofk = 1, we end up
with a solution that is nearly identical to previous forms\W$ual Odometry (VO) [43], [52], [55]. The
graph in Figure 4 shows the average MSE performance forypis of Visual Odometry compared to the
batch solution, as well as the SWF solution. Given this imsithe SWF can be seen as strictly superior
to VO: it has the same computational complexity as VO, ye) sHows near optimal convergence and 2)
does not suffer from stationary drift. In practice the SWHnigst often used in this constant-time regime.

The SWF is an approach that can scale from exhaustive batatiosis to fast incremental solutions
by tuning a time window of active parameters. If the windowc@npasses all time, the solution is
algebraically equivalent to full SLAM; if only one time-gt@s maintained, the solution is algebraically
equivalent to the Extended Kalman Filter SLAM solution. frehis point on we shall simply refer to



the case oft = 1 with landmark marginalisation as “Visual Odometry”.

C. The Provenance of the Sliding Window Filter

The SWF is a non-linear least squares approach to navigatidnmapping inspired by results from
the Photogrammetry community, dating back to the late 193Qs[47], and later derivatives like the
Variable State Dimension Filter [45], [44], Visual Odomefd 3], [52], and of course Extended Kalman
Filter SLAM [66]. The techniques of Photogrammetry weredyaly adopted or rediscovered as Visual
Odometry and Shape from Motion in the computer vision comitgya3], [71], [24] and Simultaneous
Localization and Mapping in the robotics community [41]7]6These are all least squares estimators —
often expressing algebraically equivalent solutions.

Since the original development of the SWF [62], some sintgahniques have been developed in the
computer vision literature based on bundle adjustment, [[2®]. The high frame rates achieved in [20]
are largely due to short feature track lengths; furthermibre effect of marginalization and including prior
information is not addressed, and it is assumed that fixidgfr@mes is reasonable. Because frames are
removed and only certain keyframes are kept, the resultsatasonverge to the optimal batch solution.
Similarly, the results of [49] do not include all the datat Imstead only use a selected sub-set of keyframes,
and hence cannot match full SLAM. In contrast, the SWF attertgp match the full solution by rolling
parameters into prior information.

Brown’s Photogrammetric Bundle Adjustment (BA) is the amgj image-based batch maximum like-
lihood solution to the full SLAM problem from the iterativeon-linear least squares perspective [7].
Brown’s sparse (and therefore fast) solution to BA does nolude dense prior information or a process
model, which can be useful for SLAM. The work by Mikhail [47gs an incremental/recursive algorithm
that can include arbitrary functional relationships beswgarameters (e.g. a process model) as well as
including prior information matrices. However, to fadlie faster run-times Mikhail employs the same
sparse optimizations as Brown. Brown'’s sparse system altaxns does not capture the temporal evolution
of the probability density function if there is prior infoation induced by marginalization.

GraphSLAM [67], Exactly Sparse Delayed State Filters (EB§321], Smoothing and Mapping (SAM)
[18], and recent work of Konolige [36] are all examples of Amear least-squares techniques similar to
Bundle Adjustment. SAM solves the system equations effilyidoy variable re-ordering, which is also
a well known technique in Photogrammetry [71]. The succédhis approach depends critically on the
structure of the least-squares system matrix, which gépeannot be known beforehand since it depends
on how the robot goes about observing the world. Generaflderimg algorithms that are optimal for
arbitrary system equations are known to be NP-complete BEphSLAM is an off-line solution and is
typically tackled with available numerical sparse solvers

Both GraphSLAM and ESDSFs factor the map onto the path, byeproducing a “pose-graph”,
which can then be solved for the optimal robot trajectorystHaose-graph optimization methods are
a recent development [56], [27], [25]. By finding the maximiikelihood configuration of a sequence of
interrelated poses, these approaches can solve imprgdange problems. Note however that pose-graph
methods do not compute an optimal structure estimate amebithdocus on computing the optimal vehicle
trajectory.

Exactly Sparse Delayed State Filters (ESDSFs) areea-basedapproach inspired by both the VSDF
(see later) and Sparse Extended Information Filters [6B]].[ESDSFs are efficient approximations to
the full SLAM solution, although they rely on view-matchingw data, so the assumption of independent
measurement noise in the sensor model may be violated — ameyebe kept on the “double counting
data" issue.

In some sense, Sliding Window Filters are the opposite ofplEB$@.AM and Delayed State Filters:
where these methods factor the map onto the path, the SWHydlagtors the path onto the map. This
has important implications for the run time complexity as #igorithm progresses. In GraphSLAM, as
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the map is factored onto the path, the induced structureaméth block,A,, can grow to be arbitrarily
complex. This stems from the fact that there are an infiniteetsaof paths through an environment — and
usually we will not know how the robot is going to move befart. On the other hand, marginalizing the
path onto the map only ever induces a structure witloanded complexitgs there is a limited number of
landmark-to-landmark conditional dependencies induBeddamentally, while there is an infinite variety
of paths through the environment, there is just one enviemtnhis point is a crucial distinction between
methods that factor onto the path and methods that do not.

The Variable State Dimension Filter (VSDF) [44], [45] comés the benefits of batch least squares
with those of recursive estimation. Interestingly, bota 8WWF and the VSDF are very similar to Mikhail’s
“Unified Adjustment” technique [47]. Mikhail’'s work is a geral and complete treatment of least squares
adjustment, whereas the SWF and VSDF are specific exampfg®edgo SLAM and structure from
motion (SFM). The VSDF is a mixed formulation, taking inggion from the Sparse Levenberg-Marquardt
method used in Bundle Adjustment [48], [29], and also from tfaditional Extended Kalman Filter used
in SLAM [66]. For computational efficiency, the VSDF ignoresnditional dependencies that are induced
from marginalizing out old parameters, and, like Brown'snBle Adjustment, it also ignores conditional
dependencies that exist between adjacent pose parameterspeeially the block tridiagonal matrix
structure of the process block. In comparison, the leasareguformulation for full SLAM captures this
information naturally. Neglecting conditional dependesccan be detrimental; in SLAM it will lead to
divergence [50].

The recent work of Deans [17] is also inspired by the leasasegiapproach, and like the VSDF and
SWEF aims at online implementation by focusing the compaitatin the most recent set of measurements
by removing parameters from consideration. However, atste# incrementally marginalizing the solution
pose by pose, the formulation breaks the problem into se&ljafcent batch problems.

D. Feature Selection and Matching — The Image ProcessingtRtnd

This section describes the underlying image processing fi@ature-based visual tracker essential for
tracking features between stereo frames; and is joint watk Wei and Reid of the Active Vision Lab
at Oxford. The steps have similarities with other works ia fleld e.g. [19] but here are adapted to the
processing of stereo images. We begin with a top level view. dach incoming frame, the following
steps are undertaken.

Feature extraction. The features used in this work are provided by the FAST coemé&actor
[59]. This extractor provides good repeatability at a smalputational cost. FAST corners are
extracted at different “pyramid levels” (scales). The pyic provides robustness to motion blur
and enables point matching in larger regions of the image.

Pose initialisation. To provide robustness to strong inter-frame rotation, aD §&dient descent

algorithm [46], applied at the highest pyramid level, isdise estimate the 3D rotation between
two time-steps. The assumption of pure rotation is valiché tnter-frame translation is small
with respect to the landmark depths and at 20Hz frame raseighindeed the case.

Temporal feature matching. The 3D landmarks (the map) are projected alternatively thio
left and right images and matched in a fixed-sized window &ekiracted FAST corners using
mean SAD (sum of absolute difference with the mean removedbdtter resilience to lighting
changes). A maximal accepted score is set to provide a fist pEbustness to outliers. Point
correspondences between image pairs are obtained by aiseasearch in the already rectified
images.
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TABLE I
VISUAL ODOMETRY RESULTS FORBEGBROKE AND FIRSTNEW COLLEGE DATA SETS

| | Begbroke | New College 1 |
Avg. Min. Max. | Avg. Min. Max.
Distance Travelled (km)] — — 1.08 — — 2.26
Frames Processed — — 23,268 | — — 51263
Velocity (m/s) 0.93 0.00 1.47 0.94 | 9.46-4 | 1.53

Angular Velocity (deg/s)| 9.49 0.0 75.22 | 7.08 | 4.12-3 | 69.00
Frames Per Second | 22.2 10.6 314 20.6 10.3 30.0
Features per Frame 93 44 143 95 37 142

Feature Track Length | 13.42 2 701 11.59 2 717
Reprojection Error 0.17 | 2.74-3 | 0.55 0.13 0.03 1.01

TABLE 1l
VISUAL ODOMETRY RESULTS FOR SECOND AND THIRINEW COLLEGE DATA SETS
| | New College 2 | New College 3 |
Avg. Min. Max. | Avg. Min. Max.
Distance Travelled (km)] — — 2.05 — — 0.82
Frames Processed — — 49,114 | — — 29489
Velocity (m/s) 0.83 | 45%-4| 3.05 056 | 1.6%-4| 1.26

Angular Velocity (deg/s)| 7.13 | 8.23%-3 | 62.56 | 4.83 | 5.24¢e-3 | 59.75
Frames Per Second | 21.5 7.4 29.8 20.3 7.4 28.6
Features per Frame 91 45 142 93 49 146

Feature Track Length | 14.43 2 622 | 27.76 2 1363
Reprojection Error 0.12 | 0.028 0.91 0.10 | 0.024 0.29

L ocalisation. After the map points have been matched, a localization stepmses the 6 D.O.F.
of the camera pose using m-estimators for robustness. &feminimisation, the landmark
measurements with strong reprojection errors are remond the system. This step proved

important to enable early removal of outliers and the pagsiof adding new, more stable
landmarks.

Left-right matching. To achieve a high-frame rate with good accuracy around %0féftures
are tracked at each time-step. The feature selection wdo#lews the assumption that we
desire distinctive features with a uniform distributiontive image (irrespective of the underlying
tracking uncertainty). A quadtree is used to represent thgilsltion of the measurements at
each time-step. It contains the number of measurementsiimthge and the maximal amount
of points allowed in the different parts of the image to eesaiuniform distribution of features.
It is used in the following way.

1) During temporal matching, the matched map points aretedénto the quadtree according
to their measurement image locations.

2) To add new features, FAST corners are extracted from thard right images and ordered
by a distinctiveness score (in this work we used Harris sjofi® decide which features to
add, the best features are taken in order and their imagédoda checked in the quadtree
to ensure the maximal amount of allowed points has not beeaeebed. If it passes the
test, the corresponding point in the other stereo pair iscked along the same scanline.

E. Visual Odometry Results

We present results from two venues, “Begbroke” and “New &yl — the latter taken over multiple

days. The data sets are summarised in Tables Il and Il anestimaated trajectories are shown in Figures
5(a)-5(d).
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Fig. 5. Visual Odometry results for the four data sets dethih Tables Il and IlI.

[1l. CLOSING LooOPS WITHFAB-MAP

Loop closure detection is a well known difficulty for metrit. &AM systems. Our system employs an
appearance-based approach to detect loop closure — ing sshsory similarity to determine when the
robot is revisiting a previously mapped area. Loop closuesdased on sensory similarity are independent
of the robot’s estimated position, and so are robust everituat®ons where there is significant error in
the metric position estimate, for example after traverankarge loop where turning angles have been
poorly estimated.

Our approach, FAB-MAP (Fast Appearance Based Mappingyiquely described in [13], [15], [14],
[16], is based on a probabilistic notion of similarity an@anporates a generative model for typical place
appearance which allows the system to correctly assign ¢bagure probability to observations even in
environments where many places have similar sensory agpear— a problem known as perceptual
aliasing.

Appearance is represented using the bag-of-words modelajfmd for image retrieval systems in the
computer vision community [64], [54] which has recently begplied to mobile robotics for loop closure
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detection by several authors [22], [1]. More generally @pprce has been used in loop closure detection
and localisation tasks by many authors [38], [39], [10],][d84], [74]. At time k, our appearance map
consists of a set ofi, discrete locations, each location being described by aildision over which
appearance words are likely to be observed there. Inconengosy data is converted into a bag-of-words
representation; for each location, we can then ask howylikels that the observation came from that
location’s distribution. We also find an expression for thhelability that the observation came from a
place not in the map. This yields a PDF over location, whichcaa use to make a data association
decision and either create a new place model or update oiaf ladlout the appearance of an existing
place. Essentially this is a SLAM algorithm in the space gfearance, which runs parallel to our metric
SLAM system.

A. A Bayesian Formulation of Location from Appearance

Calculating position, given an observation of local appeee, can be formulated as a recursive Bayes
estimation problem. If.; denotes a locationy,, the k' observation andZ* all observations up to time
k, then:
p(Zi|Li, ZF 1 )p(Li| Z271)
p(Zi|Z57)

Here p(L;|Z%~1) is our prior belief about our locatiom,Z,|L;, Z¥~!) is the observation likelihood, and
p(Z,| 21 is a normalizing term. An observatiof is a binary vector, thé!" entry of which indicates
whether or not the® word of the visual vocabulary was detected in the currenhesc@he key term
here is the observation likelihoog(Z,|L;, Z*~'), which specifies how likely each place in our map
was to have generated the current observation. Assumimgrecuand past observations are conditionally
independent given location, this can be expanded as:

P(Ze|Li) = p(zn|21, 22, ooy Zn—1, Li)...p(22] 21, Li)p(21|Ls). )

This expression cannot be evaluated directly because ointinectability of learning the high-order
conditional dependencies between appearance words. Thaest solution is to use a Naive Bayes
approximation; however we have found that results impraweserably if we instead employ a Chow
Liu approximation [11] which captures more of the condiibdependencies between appearance words.
The Chow Liu algorithm locates a tree-structured Bayesiatwark that approximates the true joint
distribution over the appearance words. The approximasaguaranteed to be optimal within the space
of tree-structured networks. For details of the expansiop(4;|L;) using the Chow Liu approximation
we refer readers to [13].

p(Li|2*) = (4)

B. Loop Closure or New Place?

One of the most significant challenges for appearance-basgdclosure detection is calculating the
probability that the current observation comes from a plagealready in the map. This is particularly
difficult due to the repetitive nature of many real-world Eomments — a new place may look very similar
to a previously visited one. While many appearance-basedifation systems exist, this extension beyond
pure localization makes the problem considerably morecditfi{28]. The key is a correct calculation of
the denominator of Equation 4(7,|Z*~!). If we divide the world into the set of mapped placesand
the unmapped place¥, then

P(ZeZ57Y) = Y p(ZelLon)p(Lin 257Y) + > p(Zi| L) p(Lu| 27) (6)
meM ueM

where we have applied our assumption that observations areitmnally independent given location.
The first summation is simply the likelihood of all the obsaions for all places in the map. The second
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Fig. 6. Place recognition results generated by FAB-MAP.bBbility of loop closure is calculated to be 0.9986. (Notatth stitched
panorama view is shown here; the algorithm is applied dirgotthe unstitched frames.)

Fig. 7. Example place recognition result generated by FABPMunder markedly different lighting conditions. Probéiibf loop closure
is calculated to be 0.9519.

summation is the likelihood of the observation for all pbssiunmapped places. Clearly we cannot
compute this term directly because the second summatioffeistieely infinite. We have investigated a
number of approximations. A mean field-based approximdtasireasonable results and can be computed
very quickly; however, we have found that a sampling-baggmi@ach yields the best results. If we have
a large set of randomly collected place modeéls (readily available from previous runs of the robot),
then we can approximate the term by

HZI 2 % S Dl Lo )p (Lo Z570) 4 plLe| 241 3 22D

meM u=1

(7)

Ns

wheren, is the number of samples used,L,...|Z*~!) is our prior probability of being at a new place,
and the prior probability of each sampled place mobglwith respect to our history of observations is
assumed to be uniform. Note here that in our experiments leepl,, do not come from the current
workspace of the robot — rather they come from previous rdntke robot in different locations. They
hold no specific information about the current workspace rather capture the probability of certain
generic repeating features, such as foliage and brickweidgures 6 and 7 show typical loop closure
results obtained using our method. Note the high degree mfiidence despite marked changes in scene
and lighting. Figure 8 shows the compute time per new imagkeddads a function of topological map
size. Note that these results are generated with a FABMARemmgntation described in [14] much faster
compute times are reported in [16].

In this paper we have used a Ladybug panoramic camera beitea#° views it provides allow loop
closure detections when revisiting a place in the opposrection. However there is nothing about our
system that explicitly require360° views. Indeed, we could (and have) use the relatively nafreld of
view images from the stereo pair but we would expect an irserea the false negative rate.

V. UPGRADING FROMTOPOLOGICAL LOOPCLOSURES TOMETRIC CONSTRAINTS

The FAB-MAP algorithm takes a collection of images as inm#dh image in our case is a five-image
panorama taken from a Ladybug camera). Images are pressege@ntially and at each time-step the
algorithm returns & N + 1) bin pdf over places (images) representing the probabliity the latest image
corresponds to each @f previous places (images) or a “new place”. This allows usetwegate topological
loop closure notification when the probability of a match dmaes substantial. The precision-recall and
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Fig. 8. Inference time for FAB-MAP. Generating the SURF feas adds a fixed overhead of 716ms on average. The meamitdeime
is 56ms, so the total mean processing time per panoramiceinggd72ms. The robot collects a panoramic image on averagry év7
seconds, so this is faster than real time.

spatial regularity of the detected loop closures is showkigires 10 and 11. There is a marked difference
in recall performance between the Begbroke and NewCollags.The Begroke sequence was well lit
and diverse in appearance. In contrast, the New Colleges#atf5] is far more challenging containing
marked changes in lighting and many opportunities for spafiasing (false positives) something which
FABMAP is designed to be resistant to. Note however that fthlnlata sets one in two poses are within
2m of a correctly identified loop closure constraint.

Loop closures are detected using a multi-view camera gigisty of view. They take the form of a
tuple < t,, t, > wheret, andt, are two times at which the vehicle appeared to be in the saaue pWe
refer toa andb as “loop closure ends”. Figure 9(a) illustrates the disiidn of loop closures detected
on the Begbroke data set. Only loop closures with a 99% piibtyalre indicated.

The question now is how does one apply this loop closure cainsto our metric VO derived trajectory.
For any loop closure< t,,t, > we require a metric parameterisation of the 6 D.O.F. transétion “7;
between the poses of the vehicle at the timeandt,. We currently use two options: pose recovery from
two pairs of stereo images and laser point cloud matching.

A. Pose Recovery from Stereo Pairs

A version of our visual-odometry front-end is used to veribop-closures from FAB-MAP. The
approach described in Section II-D is used to select 500 @istfibuted image points. SIFT descriptors
are then extracted (with scale provided by depth from sjerstd n-to-n matching is done between left
images to establish temporal correspondence. RANSAC @ wsénd the initial transformation between
frames (with three 3D points used to produce potential ng)d&he final RANSAC estimate is then used
to seed a Gauss-Newton MLE estimate with a Huber kernel fdhéun robustness. Typical stereo loop
closure images are shown in Figure 12 and Figure 13. Estariatg have more than 50 matches and a
reprojection error less than 0.2 pixels are kept as valigks€huncertain loop-closure transforms are used
during pose graph relaxation as described in Section V.réig4 shows an interesting and important
case in which the FAB-MAP algorithm gives a false positivaahhis caught by this visual geometry test.

B. Pose Recovery via Point Cloud Matching

Recovering relative pose from stereo yields excellentltgshowever it cannot be run on all loop
closures. It is not always the case that loop closures bimdtgpan the vehicle’s trajectory in which the
vehicle is travelling in the same direction — for example finst pass through a region may have been
a north-south traversal, while the second is south-nortte FAB-MAP loop closure is insensitive to
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Fig. 9. Visual Odometry results for the four data sets dethih Tables Il and Ill with detected loop closures shown ieegr. Only loop
closures with a 99% probability are indicated. Note thatdntrast to the Begbroke data set where lighting was ideaigthre false positives
in the processing of the first New College data set, which rhastemoved with geometric consistency checks.

changes in the direction of travel — it considers all the alsuords seen in 860° panorama — but the
two views from the stereo rig are wildly different and thesdiitle hope of finding an alignment between
the two poses. In these cases we resort to using ICP [4] betive® point clouds generated from short
(a few seconds) segments of the vehicle’s motion around eadlof the loop closure.

ICP is not guaranteed to converge — especially if the ingisdssed alignment between the point clouds
is in gross error (often the case with loop closures). A teplmcapable of matching 2D point clouds under
such conditions was proposed by Bosse and Zlot [6] and it iSrdantion to extend this to the 3D case
which we need here. However, for the results given in thisepage implemented a simple (conservative)
threshold-based classifier capable of rejecting incoraighments based on the final absolute residual
norm, inlier to outlier ratio and rate of change of residuatm over the optimisation. Figures 15(a) and
15(b) show the effect of scene shape on the outcome of the liGfheent. Convergence problems with
ICP are well known and we shall not dwell more on them here. él@x were it not for an ICP fall
back, we would not be able to deduce the metric loop closurdke first New College data set.

Before moving on to discuss how metric loop closure measengsrare used, Figure 16 shows the loop
closures which were upgraded from toplogical to metric fdsynboth stereo and ICP. Note that point
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85% of poses are either detected as loop closures or arenvidithiof a detected loop closure.
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Fig. 11. Quality evaluation of the FAB-MAP loop closure dwtens. The precision-recall curve for FAB-MAP loop closuttetection for
the New College 1 dataset is shown in (a). 16% of possible tbagures are correctly detected, with 99.5% precision. Sfagial distribution
of the loop closure detections is shown in (b). For parts eftthjectory where loop-closing occurs (defined as the paghgy within 7.5m),
50% of poses are either detected as loop closures or arenvidithiof a detected loop closure.

cloud matching was only invoked for the cases in which theestenethod failed — generally because
of a reverse traverse.

V. POSE GRAPH RELAXATION

The VO subsystem produces a chain of 6 D.O.F. vehicle posksdiby relative transformations which
should be thought of as uncertain metric constraints. Thebooation of the FAB-MAP output and metric
pose recovery methods just described provides additiaradtraints between poses, resulting in a graph
of vehicle poses. Figure 17 illustrates the structure ofpgct pose graph. We wish to “relax” this graph,
perturbing the edges to accommodate, in a minimum erroreséns metric information in both VO and
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Fig. 12. Feature correspondences at loop closure are foundd/exified by relative stereo pose estimation. Loop clasymesented by
FAB-MAP must pass a geometric check: we typically requirecB@respondences with an average reprojection error less Q2 pixels
before we accept the metric loop closure measurement ak Wite this does not mean the output of the FAB-MAP processise — just
that there are not enough geometric features to upgrade dréopological to metric constraint. Such inferred uncertalative poses are
used in the pose-relaxation technique described in Segtidrhe figure shows the intra-pair matches (left right) arel ititer-pose matches

(top, bottom).

loop closure constraints. Several authors have examingldoche for pose graph relaxation in recent years
e.g. [27], [69]. The particular size and structure of ourpiig motivated us to use classical non-linear
optimisation techniques taking care at implementatioretbim make full use of the sparse properties of
the problem. We note with reference to Figure 17 that thealisdometry system produces a chain of
relative transformations (and poses) through the centireofraph. This chain corresponds to the vehicle’s
smooth trajectory through the workspace. Loop closure tcaimés pinch this chain together via single
edges between disparate poses. We chose to optimise notheveet of poses in the graph but rather
over the relative poses between them. Defihe {v;,v,-- -} to be the set of inter-pose transformations
along the trajectory chain such thatis the transformation between pose 1 and pose. Furthermore
defineV = vl v'-..]T to be a stacked vector of parameterisations of these relatnsformations —
this will be our state vector which we wish to optimise.

Consider now Figure 18 which shows a loop closure constistween two poses: andg. We note
that the transformatior’; 7}, between two poses: andq is simply the integration of all the individual
transformations between poses:

mTq = Un+1 P VUny2 - D Vq (8)

where® denotes the transformation composition operator. Thia g@nstitutes a prediction of the loop
closure constraint’L, and||™L, —™ T,||* is a measure of the compatibility of the graph edges with
the loop closure measurements. More generally, if we havet afsn loop closuresC = {L;---L,}
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Fig. 13. A FAB-MAP true positive rejected by stereo registna due to lack of correspondences. It is possible to géaermre matches;
here we chose to err on the conservative side when it comesniputing metric information from loop closure notificatior— incorrect
loop closures are dire.

where L; is between pose(i) andb(i) (e andb are look up functions), anth interpose visual odometry
measurement¥O = {vo, - - -vo,, }, then the cost metric we wish to impose on the whole graph lagil t
minimise is . .

C(VIL,VO) = |ILi =" Ty |I> + > ||vos — vl 9)

where we note that the predicti@ﬁ)Tb(i) is itself a function ofl/. The quadratic cost function in Equation
9 is well suited to classical non-linear minimisation teicjues. Many of these techniques require the
calculation of the derivative of the measurement prediciuith respect to the state vector being optimised.
We will now consider the form of this derivative.

Consider again Figure 18 which shows one loop closure betwesem and pose;. We can write an
incremental change in the prediction 0t} as

9 m
ST, = Y 0 9 §u, (10)

wheredv, is an incremental change in thg component of the state vectbr— the relative transformation
between pose — 1 and poser. Considering the partial derivative in the summation anbdsstuting
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Fig. 14. FAB-MAP false positive rejected by stereo registra due to lack of correspondences. The two scenes ardycleatr identical
although they do share a common appearance.

(a) Good ICP alignment (b) Failed ICP alignment

Fig. 15. Scenes with rich geometry commonly lead to excelem.O.F alignment but when presented with largely flat ssel@P
commonly converges to a local minima. Here the boughs ofrée (final loop around the ground of the first New College dath grovide
a well defined minima and an excellent match between two pintds (red and blue). In the case of a facade of a buildingaliggment
has snapped to an incorrect alignment, understandableatialsgiasing problem.
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Fig. 16. The successful stereo-metric and laser ICP-migtoijs closures that survived the geometric verification esagtereo successes
are in dashed green and “fall back” laser cases are in sofisleauThe direction of travel of the vehicle has been indidawith arrows.

Fig. 17. A section of typical pose graph. Poses (e, f...\deroted as nodes (circles) and edges are relative traretfors. There is a
chain of relative transformations flowing through the grapeated by the visual odometry system. Loop closure tramsftions’L; are
single edges linking disparate nodésa@d j) of this chain.
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Fig. 18. A section of pose graph showing a loop closure batwehicle posesn andq and a state of interest.. Note the pose graph
optimisation is over transformations between vehicle pasad not the poses themselves. The dotted circles reprasearbitrary number
of poses.

Equation 8 we have

8mT‘q 0 {Um-i-l S Um+2 " S Uq}
- 11
d v, ov, (11)
_ oA{"T_1 ® v & 1,} (12)
ov,
where™T,_; and"T; are rigid kinematic chains. This allows us to write via thaichrule
o™T,
811 g - jl(m r—1 SP Uryr Tq)jZ(mTr—la UT) (13)
where
_ Ordy
or @
Tl y) 5 (15)
Y

are the jacobians of the composition operatofor arbitrary transformations andy.
Equation 10 can be written in matrix form

5™ T, = by, 6V (16)

wheredV is a vector of small changes ¥ andh is a row-matrix where thé'* sub block (» < k <
q) is given by Equation 13 and zero for all outside this range. Writing the error between predicted
transformatioriZ, and the measured value of the loop clostide, asé™ L, we seek a change i, §V/,
such that

h,, ,0V =¢"L,. a7

If we haven loop closure constraints we will have such constraints to fulfill each in the form of
Equation 17 yielding
HoV =0L (18)

where )L is a stacked vector of loop closure measurements. As it stémd system of equations is
almost certainly underconstrained — there will typically many fewer loop closures than poses (we
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Fig. 19. Left: the optimised trajectory of the first New Cgkedata set (2.3km) using only visual constraints (no |aG&¥)| Note the final
loop around the ground appears to be in error because n® statching was possible due to the opposite traversal direcRight: the
optimised trajectory using both visual constraints and i@&ching. Note how in comparison to Figure 19(a) the finaliesion around the
grounds is properly constrained.

typically drop a pose every 50ms). The system is made to beredisle by adding in the visual odometry
measurements between poses such that the complete probtermés

H oL

MW_M (19)
whereZ = [vol,vol - -] is a stacked vector of visual odometry measurements betp@ss. This linear
form can then be solved swiftly using standard techniques e-use preconditioned conjugate gradient
because[HTI}T is large and we do not wish to create or store it in memory — tddyincremental
adjustments in the pose graph’s edges. Optimisation cedses the perturbations il become small.

Figure 19(a) shows the results of applying our relaxatiopregch to the trajectory shown in Figure

5(b) using only stereo metric constraints. The final loopuatbthe grounds was made in the opposite
direction to those that came before and so no FAB-MAP loopuwies could be upgraded metrically.
Figure 19(b) shows the advantages of being able to fall backaser-based ICP matching. Where no
stereo metric constraints could be found, point clouds eesl from the VO trajectory are matched in
6 D.O.F. and used to constrain the pose graph. Figures 20B2@&b) show relaxed trajectories for the
second and third New College data sets.

VI. MAP GENERATION AND QUALITY ASSESSMENT

The trajectory estimation described in this paper is egtivesion-based (apart from cases where we
need to fall back to ICP registration to infer loop closur@metry — see Section IV-B). We map the
3D structure of the workspace by rendering laser range dadastereo depth maps from the estimated
trajectory.

A. Laser Map Generation

Our vehicle is equipped with two LMS 291 lasers mounted gelty on its sides. The lasers are set
to 0.5 degree resolution resulting in an “angel wing” bearntgpa. By capturing the intensity of the
reflected laser pulses and careful time synchronisatiohl¢$all and Il indicate the angular velocities
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Fig. 20. The optimised trajectory of the second New Collega det (2.1km) and the third New College data set (0.8km)

Fig. 21. Close detail of a point cloud built by rendering rarajd reflectance data from the estimated trajectory of goSggway platform
(New College data set).

experienced by our vehicle) we are able to generate detaidegoint clouds. Figure 21 shows the typical
detail produced in real time from our full 6 D.O.F. platform.

Figure 22 shows a view of part of the map built from the New €gdl data set [65] (front quad)
rendered from the estimated trajectory. The “up” gravitgtee has been aligned using the ground plane
detection described in Section VI-B. Figure 24 shows a tihpoint cloud of the entire first New College
data set.

With an assembled 3D point cloud in hand, it is possible talpoe a coloured version like that shown
in Figure 23 by back projecting laser points into the view a@iaanera and looking up the required colour.
It is at this point that the importance of high quality lenstdrtion removal, timing and 6 D.O.F. pose
estimation becomes evident — poor spatial and temporahralént lead to disappointing results. While
this produces appealing results it is not an end in itselth&ait is an important precursor to the semantic
labeling step described in Section VIII.

24



Fig. 22. View of the buildings in the Quad of the New Colleg¢adset rendered from the 6 D.O.F. estimated trajectory.

Fig. 23. A view of the New College data set with colour derifem back-projecting laser points into the images takenhgyganoramic
camera used for loop closure detection.
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(a) Left image (b) Disparity map

Fig. 25. The result of disparity map calculation on a steraio fstom the New College data set. The colour of pixels in tigpdrity map
indicate depth — red pixels are close to the camera, dark dledar away. Pixels for which no disparity could be caledaare black.

B. Dense Stereo Map Generation

As well as using the stereo rig to estimate vehicle motion,anee able to generate disparity maps in
real time. This will enable us to undertake obstacle avaidaand motion planning tasks. At present we
use the disparity maps to fill in the 3D structure of the scenteobserved by the scanning lasers on our
vehicle shown in Figure 2. The orientation and field of vieW] of the lasers means that a stripe of
workspace is unobserved underneath the vehicle and nelarsai (note the black stripe in Figure 23).

We implement a local, window-based stereo algorithm emptpg number of disparity refinement and
error detection stages. Stereo images from the Point GreyoR2Bee2 camera are undistorted and rectified
using the factory calibration stored onboard the cameracdrmpensate for any photometric variation
between the two images, we process the images using a LaplatiGaussian filter [42]. Taking the left
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image as the reference image, we calculate correlatiomsawming a sum of absolute differences over the
correlation window (typically 11x11 pixels). These digfias are refined using the multiple supporting
windows technique described by Hirschmiiller and Garibf80]. This helps to compensate for errors
introduced by a correlation window which overlaps deptlcaidinuities. Five supporting windows are
used for speed of computation and the best (lowest) threescontribute to the refined correlation score.

For each pixel, a search of the corresponding discrete latime curve is performed, looking for
the minimum correlation score. A left/right consistencyeck, as proposed by Fua [26], performs the
correlation search twice by reversing the roles of the twages. A disparity is marked as invalid if the
two correlation curve minima do not agree.

A sharply defined minimum is strongly indicative of a correotrespondence match. A flat, or close to
flat correlation curve indicates a region of low texture iniathit is inherently difficult to find a correct
match using a window-based stereo algorithm. We therefeghrd disparities for pixels where the
relative difference between the lowest and second lowesitgpof the curve falls below an empirically
determined threshold.

Subpixel interpolation is performed by fitting a parabolathe correlation minimum and the two
neighbouring values — the minimum of this curve is taken tothe subpixel disparity. Finally, we
consider the 8-way connected components of each pixel inethdting refined disparity map, discarding
pixels which are not connected to a minimum number of pixeth similar disparities. This step helps to
remove isolated incorrect pixels. An example result of ogpdrity map calculation is shown in Figure
25.

We convert the disparity maps into 3D point clouds and, utiieg6 D.O.F. poses from visual odometry
(Section 1), orient them in a global coordinate frame. A BIemMRANSAC [23] plane fitting method is
used to detect the ground plane in each point cloud. Resdtsheown with ground plane highlighted in
Figure 26. We choose to only store 3D points which are locatigltin 5m from the camera. This is due
to the triangulation uncertainty in the conversion frompdisty to depth becoming more pronounced with
more distant points [43]. An average ©9% of possible pixels in each 512x384 input image are given
valid disparity values by our implementation, and of th&8& fall within our 5m threshold.

C. Assessing Map Quality

Although the 3D point clouds are visually compelling, it mportant to assess their intrinsic quality.
In the long term we want to use measures of map quality to dedwdditional pose graph constraints
required to create a high quality model of the workspace.hia section we will analyse the quality
of the map built inside the New College Quad. The quadrangle wircumnavigated four times and a
perfect map would have all four walls lining up perfectlyeafeach orbit. Our approach is to measure
how far from this ideal our map really is. We begin by findinguphr sets of points from walls which
were observed on multiple loops using the following two step

Region of interest selection. The user is presented with a 3D point cloud of thiial pass of
a environment and selectstest points,'p;.,, on a wall and expands a capture radiusound
each such that the set of point3); within r; of p; lie within a plane. Here we are using a
superscripted prefix to indicate the pass of the workspace being the first pass} being the
second and so on.

Interest expansion. A script is run which searches over the entire map to findteadil planar
point sets that correspond to the same patch of wall but frobsexjuent passes. If there were
N complete passes through the environment we would expepbint sets for each of thé
user-selected test point$')V; i = 1: k. We are assuming here that the maps being analysed
are not in gross error, otherwise, finding correspondencesss passes will be hard.
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Fig. 26. Dense 3D point cloud from stereo using the first NeWleQe data set rendered from the V.O. trajectory, groundela green.
An average of79% of possible pixels in each 512x384 input image are givendvdisparity values by our implementation, and of these
58% fall within 5m of the camera.

We are now able to calculate statistics on how consistengdloenetry of the wall patches are as they
are mapped again and again. Firstly we calculate the notimadf each wall patcHW; via an SVD of
its scatter matrix and also the centroids, j =1 : N i =1 : k. For each possible pairing of planes
corresponding to the same physical patch of wall we caleula angle between the surface normals and
the distance between centroids. We refer to these quanéiientra-cluster alignment and displacement.
Table IV presents statistics of these quantities.

TABLE IV
ANALYSIS OF THE QUALITY OF NEW COLLEGE QUAD POINT CLOUD

Property Value
Maximum intra-cluster angle over al 9.1°

Minimum intra-cluster angle over alty 0.32°
Maximum of the average intra-cluster angle overall 4.86°
Minimum of the average intra-cluster angle overJall 0.66°
Average intra-cluster angle over alV 3.6°

Maximum intra-cluster displacement over alf 0.6m
Minimum intra-cluster displacement over aW 0.02m
Maximum of the average intra-cluster displacement oved&ll| 0.33m
Minimum of the average intra-cluster displacement oven/&ll | 0.14m
Average intra-cluster displacement over ¥l 0.21m
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(a) A user-selected seed point in a planar region (b) Locations in which seed points were selected

Fig. 27. In the left image a user has selected a point on a wallide a tree) using laser points only from the first pass ipastd a
planar region has been detected and selected around itightenand image shows, with red crosses, where these tesspoere selected
to generate the statistics shown in Table IV .

The results are promising although not perfect, and thisiaraa requiring further work. In particular
it would be advantageous and interesting to add extra ainttrto the pose graph as a function of the
measured quality of the maps — this is an area of current relsea

VII. M ULTI SESSIONMAPPING

The FAB-MAP architecture can easily be applied across datlaeged from multiple outings. The input
to the algorithm can be batch or sequential. Presented withllaction of images, it generates a list of
loop closure notifications between images which are therasdime stamped. This means loop closures
can be found between data sets gathered days apart and ddrawperation is purely appearance-based,
we need not worry about aligning metric coordinate framéguie 28 shows loop closures found between
the second and third New College data sets.

Section V shows how the graph relaxation can be viewed asimgla chain of poses laid down by the
vehicle’s motion which is pinched together by loop closudges. This notion can be simply extended
to multi-session scenarios by modeling the change of londietween the end of ddyand the start of
day k + 1 as a single link joining two trajectory chains, but of whicle Wwave infinite uncertainty. Figure
28 shows the result of applying this technique to the cogditrajectories shown in Figure 29.

The optimisation of our pose graphs is an offline process —akies about 20 minutes to optimise
a 50,000 node graph with a few hundred loop closures. The questionnoirfg the correct weighting
between loop closure interpose constraints is a delicaeeaml needs further research. Certainly, one
must model the correlations between linear and rotatior@tian for a non-holonomic vehicle. Also, if
the optimisation is seeded with an atrocious first guess tlo@mergence to a reasonable trajectory is far
from assured. As always, local minima are a hazard and thitse take the form of tight knots in the
vehicle trajectory. To undo one of these knots (and frometlieach a global minima) appears to require
a temporary increase in the coStV|£,V0O) as defined in Equation 9 — something gradient-based
optimisers are unable to do.

VIIl. SEMANTIC LABELLING

The maps we produce are agglomerations of laser points —istpthnt they are well registered
and coloured and make for appealing images like Figure 23.viBu wish to do more. We want to
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Fig. 28. Loop closure links found within arfaetweenthe second and third New College data sets. Inter-day looguoks are shown in
green.

move towards understandinghat is in the map, where it is, and what that might mean to a user and
for the operation of the vehicle. Particularly when naviiggtin an urban context, a more informative,
higher-order representation of the environment is indispble: if only because self-preservation dictates
avoidance of highly dynamic regions such as roads. Robusligation can be helped by distinguishing
features beyond the recognition of ubiquitous generalatbjeuch as ‘ground’, ‘wall’ or ‘house’. This
motivates the definition of desired classes: in an urbanrenment places can be distinguished by the
type of ground that is present, the colour and texture ofosunding houses (or, more appropriately, of
surrounding walls) and the presence or absence of otharmrésasuch as bushes or trees. Our goal is to
add value to maps built by mapping algorithms by augmentivegnt with such higher-order, semantic
labels. We achieve this by using batbene-appearance and geometyproduce a composite description
of the local area. The following presents an overview of tlasgification framework employed as well
as the data processing involved. The system was first intemtiand evaluated extensively in [58]. It is
worth noting that the classifiers employed here originatenfia different vehicle with a different sensor
payload and setup: the classifiers were trained originailyan ATRV-Junior vehicle using data from a
forward-looking LMS 200 unit mounted in a reciprocating dlea However, the general nature of the
features used for classification provide for acceptablesdiaation performance without necessitating a
customization of the classification framework or even ieing of the classifiers for the Segway-based
platform in Figure 2.

A. The Labelling Pipeline

Our scene labelling engine is based on both appearance amdege features extracted from cross-
calibrated camera-laser pairs. In this case, on both sidkg @ehicle one of the sideways-looking cameras
of the Ladybug unit was calibrated against the LMS unit ort f#zene side. This allows for the projection
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Fig. 29. Relaxed multi-session trajectories between thersk (blue) and third (pink) New College data sets. Note filisibn and relaxation
is done with no manual alignment of coordinate frames — tignaient is automatically discovered by applying loop clesconstraints.

of gathered laser data into the corresponding images. Thuiped, the processing pipeline proceeds by
first performing a plane segmentation on a laser point cleasd@ated with a particular scene. The choice
of a plane as a geometric primitive is tolerable becausesailiquitous use in man-made environments,
but it is something our latest work does not require. Thisreagation provides us with a robust estimate
of local 3D geometry associated with every laser datum ifledtas part of a plane in the environment.

These data are then projected into the corresponding camegges.

While the next section will provide a more detailed outliffetle classification framework employed,
we mention here our choice of a majority voting scheme in éselting classifications to motivate the next
step in the processing pipeline. As described in detail 8,[the initial plane segmentation in laser space
is refined based on an off-the-shelf image segmentatiorriign The result of this processing step are
image patches — @uperpixels- which, by way of containing laser data, have 3D geometfigrmation
associated with them. For each of these superpixels, sthagapearance features are associated with each
of the projected laser data. In this case, a histogram fdr tie hue- and saturation-channel is calculated
over a fixed-size neighbourhood around each interest pbiet.laser data associated with each superpixel
as well as the corresponding feature vectors form the inptité classification stage of the system.

B. Classification Framework

The classification framework adopted here operates on itV laser data grouped by superpixel
membership and results in the classification of entire qipels in an image by means of majority
consensus of individual classifications. In order to cfggsidividual laser data, we employ a hierarchical
combination of two distinct discriminative approaches. iastration is given in Figure 30. At the top
of the hierarchy a threshold classifier is employed to digtish between ground and non-ground classes,
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Bayes Classifier
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Fig. 30. The classification hierarchy employed in this workpéoying both a Bayesian classifier ( to separate ground amdgnound
classes) and a bank of SVMs.

based on the Bayes decision rule. The decision is based dmetpkt (from the ground) of an individual
laser datum as well as the orientation of the plane segmemitich the datum is a member. The appropriate
thresholds for this classification stage were learned fraipelled training data.

The second level of the classification hierarchy consist@ bénk of support-vector machines (SVMs)
for the ground and the non-ground classes respectively. S¥M a popular choice where the model
parameters are found by solving a convex optimisation prablThis is a desirable property since it
implies that the final classifier is guaranteed to be the lesstilble discriminant given the training data.

While SVMs are inherently binary decision makers, multisd classification within a bank of classifiers
is performed by comparing the outputs of the individual SMkdgned as one-versus-all. This is a common
extension to the binary case [9]. In order to ensure that ld&sidier outputs are of the same scale — and
thus comparable — probabilistic calibrationis performed in which the class posterior from the raw SVM
output is estimated such that the final classification anmst;ma maximuna posterioridecision amongst
the individual classes [57]. Finally, majority consensusoagst all the individual laser classifications
within an image patch provides the label for that superpixel

The system was trained and evaluated on an ATRV Junior phatfesing laser and vision data from
over 16 km of track through an urban environment. Individ8&Ms were trained using a Gaussian
kernel, which is a common choice and has been found to peneethin a variety of applications. The
kernel width as well as a trade-off parameter specifyinglaramce for misclassifications during training
were determined using five-fold cross-validation over @ gni parameter space. To provide an indication
of typical system performance classification results onlalaton set are presented in Table V. For this
data set scene classification was carried out on averag® is ger frame. For a detailed description and
analysis of the performance of the classification framevtbekreader is referred to [58].

Typical output from this system when applied to data gathdrg the Segway at various positions
around the New College Quad (data set 1) is shown in Figure 31.

IX. FUTURE WORK

This paper documents our progress in producing a relialbtgedacale navigation system. While very
few published methods tackle the trajectory lengths we de ([87], [53] being clear exceptions) and at
our frame density, much remains to be done. While we ceytdiale the parts in place to achieve our
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Class Details Performance
Name] # Patchep# Points| Precision [%] | Recall [%]
Gr 99 5393 96.6 98.1
Ta 1373 | 77256 97.7 89.0
Di 147 7988 46.4 84.8
Te 2240 | 69541 82.7 73.5
Sm 906 29881 56.9 64.4
Bu 181 8364 60.6 62.8
Ve 169 4499 43.7 80.1

Legend for class shortcut&rass, Tarmac/PavedDirt Path,
Textured Wall, Smooth Wall, Bush/Foliage Vehicle

TABLE V
CLASSIFICATION RESULTS FOR AN INDEPENDENT VALIDATION SET(REPRODUCED FROM[58])

Bta

Tgxtured WallS ]

Bush/Foliage

Tarmac

Tarmac
Tarmac

Bush/Foliage B Textured Wall

Tarmac

Tarmac

™= Grass ™™ Tarmac "~ Dirt Track ™ Textured Wall ™™ Smooth Wall = Bush/Foliage ™ Vehicle

Fig. 31. Typical output from the scene labelling engine eyed around the New College quad. The top row presents thamatiimages.

The bottom row presents the corresponding superpixel ifizsfons and shows the projected laser data for each imEge.labels are
generated automatically. While not all of the classes meetl in the legend are represented in the images, the felhtebas been provided
to give an intuition as to the classes catered for by the ntiggstem. A more detailed evaluation of the system emplygzd can be found
in [58].

aims, we are not at the stage at which long-term operatiogligbte. If we were to pick one aspect of
this research that needs attention it would be introspectiothe ability to look back over past decisions,
measurements and optimisations and, armed with severacs)aedecide that all is not well and, ideally,
plan and execute remedial action. This goes beyond the complance day-to-day data association problem
where we search for the best way to interpret a given set osurements (including rejecting them). We
should be looking at the final global properties of maps aajg¢tories (for example compatibility between
camera pixels and laser range images) to assess onlingrparfoe and drive exploration strategies. Our
work on map quality analysis is a start down this path, but migmains to be done to provide SLAM
systems with the nagging, persistent self-doubt that weseelwill lead to the robust implementations
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we desire. Looking to the future, our motivation is to move fupm pixels and laser pulses through
geometry and image patches and up to useful structural amdrdgie labels of workspaces. We wish
to generate symbols with sufficient diversity and richndsst ®llow a connection with computational
linguistics. Indeed, a mid-term goal is to reach a state stesys maturity in which it becomes sensible
to engage in problems of life-long learning and principladnan machine communication via natural
language. We have some way to go before achieving this, butelNeve the bedrock must be a robust,
long-lived ability to localise, map and label workspacesrira moving platform.
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